Evaluation of Deterministic Property of Time Series by the Method of Surrogate Data and the Trajectory Parallel Measure Method
نویسندگان
چکیده
It is now known that a seemingly random irregular time series can be deterministic chaos (hereafter, chaos). However, there can be various kind of noise superimposed into signals from real systems. Other factors affecting a signal include sampling intervals and finite length of observation. Perhaps, there may be cases in which a chaotic time series is considered as noise. J. Theiler proposed a method of surrogating data to address these problems. The proposed method is one of a number of approaches for testing a statistical hypothesis. The method can identify the deterministic characteristics of a time series. In this approach, a surrogate data is formed to have stochastic characteristics with the statistic value associated with the original data. When the characteristics of the original data differs from that of a surrogate data, the null hypothesis is no longer valid. In other words, the original data is deterministic. In comparing the characteristics of an original time series data and that of a surrogate data, the maximum Lyapunov exponents, correlation dimensions and prediction accuracy are utilized. These techniques, however, can not calculate the structure in local subspaces on the attractor and the flow of trajectories. In deal with these issues, we propose the trajectory parallel measure (TPM) method to determine whether the null hypothesis should be rejected. In this paper, we apply the TPM method and the method of surrogate data to test a chaotic time series and a random time series. We also examine whether a practical time series has a deterministic property or not. The results demonstrate that the TPM method is useful for judging whether the original and the surrogate data sets are different. For illustration, the TPM method is applied to a practical time series, tap water demand data. key words: surrogate data, chaos, trajectory parallel measure method, time series analysis
منابع مشابه
A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملDetermining the Critical Intensity for Crack Initiation in Concrete Arch Dams by Endurance Time Method
This study aims at determining the critical seismic intensity at which cracks are expected to develop in a concrete arch dam. This intensity is referred to as crack initiation intensity. The crack initiation intensity measure implies that earthquakes with the intensity measure higher than this value are expected to induce cracks in the arch dam. This quantity is an indicator for seismic evaluat...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کامل